

Tomohiko Ihara^{*}, Yutaka Genchi National Institute of Advanced Industrial Science and Technology (AIST) Masako Matsuo, Yoshikuni Yoshida, Ryuji Matsuhashi University of Tokyo

	Life Cycle Assess
Conclusion	
 A new heat load simulation model was developed Calculation of heat flux from buildings is significant Using this model and urban thermal environment CO₂ reducing effects of solar reflective paint (SRP evaluated taking into account of the interactions between building environment and urban environ 	nt. model, ') were ment.
 A large-scale introduction of SRP in the Tokyo are causes CO₂ emissions to increase by 0.9%, and in residential sector by 0.5%. This is more than a 0. increase for introducing to the building individual SRP is advantageous for CO₂ reduction throughou year in the OA building and the building having a air-conditioning system. 	a, 1 the 6% y. 1t the new

TRIAL SCIENCE AND TEO